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Exploring Rectangular Grid Environments
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Abstract

In this paper we study the problem of grid exploring
which is finding a shortest possible tour for a mobile
robot moving in an unknown environment. We focus
on a rectangular grid with m columns and n rows, de-
noted by R(m,n), as the environment. We assume the
robot can see only the four cells adjacent to its current
cell. Under such conditions, we investigate different
variants of exploration problem, and propose efficient
bounds and algorithms for the shortest tour in which
visits all the cells of R(m,n). We show that for odd
R(m,n), mn+1 and for even R(m,n), mn are the tight
lower bounds for the length of the minimum tour, and
propose efficient algorithms for finding such a tour. We
show that the algorithms are optimal if the starting cell
lies on the boundary of R(m,n). Finally we propose a
(1 + 4

mn )-competitive algorithm when the robot starts
at non-boundary cell.

1 Introduction

Exploration problems is one of the challenges of robot
motion planning. Based on type of the environment and
the characteristics of the robot, different kinds of ex-
ploring problems have been considered (e.g., blindness
or visibility of the robot, type of environment and dif-
ferent services). Exploration refers to the task of finding
a path, such that every point in the environment is seen
from at least one point on the path [4]. In the explo-
ration tour problem, path length minimization is stud-
ied in Manhattan and Euclidean metrics. The results
have applications in lawn mower, searcher and cleaner
robots.

Two models of environment are defined as follows:
one without hole and barrier that is called simple en-
vironment, and one with hole and barrier [7]. When
exploring is in a continuous environment, the visibil-
ity of the robot could be finite or infinite; but actually
robots are usually blind and understand their surround-
ings using proximity sensors. Also, some tasks in the
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framework of exploring are considered for robots which
necessitates their presence in the environment like lawn
mowers that need to move all over the environment to
cut the grass.
The grid exploration problem consists of finding the

shortest possible tour, which visits every cell of a grid at
least once [7]. We call two cells adjacent, if they share
a common edge. At each step, the robot can move to
an adjacent cell along the four main directions –north,
south, east and west–. We assume that the cells have
unit size, therefore, the length of the path is equal to
the number of steps from one cell to the another and
the robot has enough memory to store a map of known
cells.
There are two variants of the grid exploration prob-

lem. In the offline variant, the robot gets a map as
an input and computes a tour. In the online variant,
the robot has limited visibility and can recognize only
the four adjacent, without any prior knowledge [7]. A
classical graph theory problem named Hamiltonian cy-
cle is closely related to the exploration problem which
it consists in determining whether or not a given graph
contains a Hamiltonian cycle, i.e., a cycle which visits
every vertex exactly once. This problem is well known
to be NP − complete [9]. Umans and Lenhart [12] pre-
sented an O(n4) time algorithm for finding Hamiltonian
cycles in grids without hole, where n is the number of
cells. Salman [11] introduced alphabet grid graphs and
determined classes of alphabet grid graphs which con-
tain Hamiltonian cycles, moreover, it is demonstrated
that if an R(m,n) (rectangle with m columns and n
rows in which m,n ≥ 2) is odd (m×n is odd), then the
rectangle is non Hamiltonian and also is presented a pat-
tern to find a Hamiltonian cycle for the rectangular grid
graph for any even number m or n. Itai et al. [6] pre-
sented necessary and sufficient conditions for existence
of Hamiltonian paths in rectangular grid graphs and
proved that the problem for general grid graphs (can
contains holes) is NP − complete, which implies that
the grid exploration problem is NP − hard as well [6].
This result is particularly interesting because it demon-
strates that allowing holes in the input grids can make
the problem much harder. Arkin et al. [1] presented an
offline algorithm which achieves an approximation fac-
tor of 6

5 = 48
40 in grids without holes and a factor of 53

40
if it contains holes.
For online variant of grid exploration, Gabriely and

Rimon [3] presented an upper bound C + B for the
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length of exploration tour that C is the number of cells
and B is the number of boundary cells. Icking et al. [5]
presented an upper bound C + 1

2E − 3 for length of ex-
ploration tour where E denotes the number of boundary
edges and showed that the best possible competitive ra-
tio is 2 for general grids. Miyazaki et al. [10] proved
that an online version of depth-first search achieves this
ratio, therefore, the focus moved to exploration of grids
without holes. Icking et al. [5] described an online
4
3−competitive algorithm which assumes that the robot
starts from the boundary of the grid. This ratio was
improved to 5

4 = 20
16 by Kolenderska et al. [8], who also

showed that the best possible ratio is at least 20
17 . In

this paper we show that the length of exploration tour
in the grid environment which is always 2-colorable is:
S ≥ C+

∣∣|V B |−|V W |
∣∣, where V B is the set of black cells

and V W is the set of white ones. We also show that the
length of optimal exploration tour in an R(m,n) (rect-
angle with m columns and n rows in which m,n ≥ 2) is
equal to C+1 if R(m,n) is odd (m×n is odd) and C if
R(m,n) is even (m× n is even), where C = m× n. For
the offline variant of exploring, we present an algorithm
to compute the optimal exploration tour in a grid rect-
angle. This algorithm takes time linear in the length of
the path, O(mn).
We prove that, every strategy in the online variant for

exploring of an R(m,n) with C cells needs at least C+2
steps, therefore, the lower bound of competitive ratio is
equal to 1+ 2

C . We also present an optimal algorithm to
compute the exploration tour in the grid rectangle by an
assumption that the starting cell lies on the boundary.
Finally we present a (1 + 4

C ) − competitive algorithm
when the robot starts at a non-boundary cell.

2 A Lower Bound

The grid graph corresponding to a grid environment
consists of one node for every cell in the grid environ-
ment. Two nodes are connected by an edge, if their
corresponding cells are adjacent.
A graph is bipartite if its nodes can be partitioned

into two sets, so that all edges have one endpoint in
each set. Every bipartite graph is 2-colorable and has
no cycle with odd length.

Proposition 1 Grid graphs are bipartite.

Every bipartite graph is 2-colorable. Moreover we can
set white color to each odd node of the grid graph and
black to the even nodes. This implies that each node
in a grid graph has at most four adjacent with different
color.
Theorem 2 Every strategy for exploring a grid envi-
ronment with C cells needs at least C +

∣∣|V B| − |V W |
∣∣

steps, where |V B | and |V W | are the number of black and
white cells, respectively.

Proof. The grid environment is bipartite. Therefore,
to explore all cells we have a cycle with consequently

movement of black and white cells, because in each step
of exploration we enter to a cell which has different color
from the previous cell. Thus, if

∣∣|V B | − |V W |
∣∣ = k ̸= 0,

to explore all the cells in the larger set, we need to
explore an equal number of cells in the other set which
means k extra visited cells. □

3 Optimal Exploration Tour in R(m,n)

In the offline variant of the grid exploration problem,
the entire grid is provided as input and the goal is to
determine a shortest exploration tour. Even though we
know that it is NP − hard to solve grid exploration in
general grids [6], the difficulty of the problem seems to
vary greatly depending on whether or not the grids are
allowed to have some holes. In the grid environment
without hole, exploration problem is still open. how-
ever, we present an algorithm to explore an R(m,n) in
time linear in the length of the path, O(mn).

Lemma 3 (see [2]). R(m,n) has a Hamiltonian cycle
if and only if m× n is even.
So the optimal exploration tour in R(m,n) is Hamil-

tonian cycle too.

Lemma 4 (see [11]). R(m,n) contains no Hamilto-
nian cycle if m× n is odd.
So, the length of exploration tour in R(m,n) is S ≥

(m× n) + 1.

Lemma 5 (see [6]). (R(m,n), s, t) has a Hamiltonian
path with started node s and final node t if:
Necessary conditions:

1. R is even (|V B | = |V W |) and s and t have different
color or

2. R is odd (|V B | = |V W |+1) and s and t are colored
by majority color.

And each the following conditions for the graph to
have no s,t Hamiltonian path:

3. R(m, 1) is a 1-rectangle and either s or t is not a
corner vertex (Figure 1(a)).

4. R(m, 2) is a 2-rectangle and (s, t) is a non-
boundary edge, that (s, t) is an edge and it is not
on the outer face (Figure 1(b)).

5. R(m, 3) is a isomorphic to a 3-rectangle R′(m, 3)
such that s and t are mapped to s′ and t′ and all of
the following three conditions hold:

(a) m is even,

(b) s′ is black, t′ is white,

(c) s′y = 2 and s′y < t′x (Figure 2(c)) or s′y ̸= 2 and
s′y < t′x − 1(Figure 1(d)).
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Figure 1: Rectangular grid graphs in which there is no
Hamiltonian path between s and t.

Then finding Hamiltonian path is done in liner time.

Corollary 6 The length of the optimal exploration tour
is m×n if R(m,n) is even, and (m×n) + 1 if R(m,n)
is odd.

Proof. By considering Lemma 3, if R(m,n) is even, we
have a Hamiltonian path which starts from s and ends
at one of four adjacent of s (Figure 2(a)). Thus, we
can change our Hamiltonian path to exploration tour
by moving toward s in one step. If R(m,n) is odd,
we have a Hamiltonian path which starts from s and
ends at t, one of four diagonal neighbors of s (Figure
2(b)). Therefore, we can change our Hamiltonian path
to exploration tour by moving toward s using traversing
one common adjacent between t and s. □
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(a) Hamiltonian path in
even rectangle
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(b) Hamiltonian path in
odd rectangle

Figure 2: Conditions for Hamiltonian path in R(m,n).

Corollary 7 Finding an optimal exploration tour prob-
lem in an R(m,n) without hole can be solved in time
linear in the length of the path, O(mn).

4 Competitive Complexity

In the online variant of the grid exploration problem the
robot has a limited visibility and must explore the en-
vironment from a starting cell with no prior knowledge.
Thus, the first question is whether the robot is still able
to find the optimal solution or has to approximate the
solution with a constant factor. There is a quick answer
to this question.
Theorem 8 Every strategy in the online variant for the
exploration of an R(m,n) with C cells needs at least
C + 2 steps.

Proof. Since the robot knows nothing about the di-
mensions of R(m,n) and its position in the environ-
ment, generally there are two different strategies for the
robot’s movements in two prior steps (Figure 3(a)):

1. First Strategy
This strategy decides to walk two steps to the west

and by these movements robot meets the boundary
of the environment (Figure 3(c)). The robot has two
choices for the next step, move toward either the north
adjacent or south adjacent. Without loss of generality,
assume the robot moves to the north one (Figure 3(d)).
In this state, the robot needs at least two additional
steps for exploring the environment (Figure 3(d)). We
can easily extend this pattern to build any rectangular
environment of arbitrary size by extending height and
width toward the north and east, respectively (Figure
3(e)). We can show easily that if the two first steps are
toward another directions (north, south or east), the
result is hold as well.
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(b)

s

(c)

s

(d)

s

(e)

Figure 3: Tight example for two additional steps in
R(m,n) with First Strategy. Dashed lines is the op-
timal exploration tour.

2. Second Strategy
This strategy decides to move two steps toward per-

pendicular direction (Figure 4(c)). We close our rect-
angle as shown in Figure 4(d). The robot must con-
tinue its exploration in two odd rectangles with width
3. Considering Corollary 1, we know the length of ex-
ploration tour is C+1 in each odd rectangle, where C is
the number of cells. So, the strategy needs at least two
additional steps for exploring the whole environment.
We can easily extend this pattern to build rectangular
environment of arbitrary size by extending the height
toward the north and south as the height of each new
rectangle is odd (Figure 3(e)). We can easily show that
if the two first steps are toward the other perpendicular
directions (east-south, west-north,...), our final result is
hold.
By these two cases, we have shown that using any

strategies in online variant, it is need at least C + 2
steps to explore R(m,n), whereas the optimal strat-
egy in offline variant needs C steps (Figure 3(d), Figure
4(d)). □

Corollary 9 Every strategy for the exploration of a
rectangular grid environment with C cells is at least
1 + 2

C -competitive.
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Figure 4: Tight example for two additional steps in
R(m,n) with Second Strategy. Dashed lines is optimal
exploration tour.

Proof. The tight example is obtained by exploring the
environment which is shown in Figure 3(d) and Figure
4(d). The length of the optimal tour is C, but the length
of robot’s tour which leads by an online strategy is at
least C + 2.

Sonline

Soptimal
=

C + 2

C
= 1 +

2

C

□

5 Algorithms of Exploration

5.1 Patterns of exploration in offline variant

In Section 3, we proved that the exploration tour in the
offline variant can be found in linear time in the length
of the path, O(mn). In this section, we present two
patterns to explore each rectangular grid. Depending
on even or odd rectangular grid these patterns can be
algorithmically extended to R(m,n), for any m and n.

1. R(m,n) is even:

Considering Lemma 1, if R(m,n) is even, we have an
exploration tour with the length C, where C is m× n.
Figure 5 gives an illustration of exploration tour with
2 examples R(10, 6) and R(9, 6). The patterns in this
figure can be used for finding an optimal exploration
tour of R(m,n) for any even number m or n.

2. R(m,n) is odd:

Considering Corollary 1, if R(m,n) is odd, we have an
exploration tour of length C+1. An optimal exploration
tour for R(9, 7) is shown in Figure 6. The pattern in this
figure can be used for finding an optimal exploration
tour of R(m,n) for any odd number m and n, where
m,n ≥ 3.

(a) Exploration tour in
R(10, 6).

(b) Exploration tour in
R(9, 6).

Figure 5: Patterns of exploration tour.

Figure 6: Exploration tour in R(9, 7).

5.2 Algorithms of exploration in online variant
In this section we present two algorithms for explor-
ing R(m,n) in online variant. If the robot starts at a
boundary cell, we present an optimal exploration algo-
rithm and when the starting cell is a non-boundary cell
we present an (1 + 4

C ) − competitive exploration algo-
rithm.

s c1

c2c3

(a) Exploration tour in
R(9, 6).

s

c1 c2

c3

(b) Exploration tour in
R(9, 7).

Figure 7: Examples for algorithm’s output in the online
variant of exploring rectangular grid environment.

1. The starting cell lies on the boundary:
We present an algorithm to compute exploration tour

of R(m,n) when the starting cell lies on the bound-
ary. The robot is able to recognize either the number
of passing cells is even or odd. There are four possible
directions (north, south, east and west) for the robot to
move from one cell to an adjacent cell. Command CW
denotes rotated clockwise in the environment. Every
corner of the environment has only two adjacent and the
robot can recognize them. The robot begins his explo-
ration from starting cell in CW direction until reaches
the first corner. Then he moves to the next corner and
determines the number of cells between the corners is
odd or even. If it is even, the robot must walk CW to
reach the third corner and explores the remaining cells
by the zigzag form between columns (rows) to reach the
starting cell (Figure 7(a)). Otherwise, the robot explore
between two rows (columns) by the zigzag form to reach
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the third corner and after that continue his exploration
by the zigzag form between columns (rows) to reach the
starting cell (Figure 7(b)).

Algorithm 1 Boundray constraint
1: Walk CW to reach the first corner–called c1.
2: Walk CW to reach the second corner–called c2.
3: if |c1c2| is even then
4: Walk CW to reach the third corner–called c3.
5: Explore all rows (columns) by the zigzag form parallel to

c2c3 to reach the starting cell.
6: else
7: Walk between two last rows (columns) by the zigzag form

parallel to c1c2 until reach third corner–called c3.
8: Explore the rest rows (columns) by the zigzag form parallel

to c2c3 to reach the starting cell.
9: end if

We can easily prove that our algorithm finds optimal
exploration tour. If the number of cells from c1 to c2
(denoted by |c1c2|) is even, then R(m,n) is even, hence
we can continue our exploration using defined pattern
in the offline variant. In the other case, |c1c2| is odd,
hence R(m,n) can be either odd or even. If |c2c3| is
odd, our first zigzag strategy ends at c3. In this state,
for continuation of exploration, we have to explore a
visited cell again and after that it is easy explore the re-
maining rows (columns) by the zigzag form to reach the
starting cell without visiting any extra cells. Therefore
the algorithm finds the optimal exploration tour.

2. The robot starts at non-boundary cell:

We present a new algorithm for the case in which the
robot starts at a non-boundary cell. The main idea in
this algorithm is to subdivide the whole environment
into two smaller rectangular environments based on the
column of starting cell. In this algorithm the robot be-
gins his movement toward the south until reaches the
boundary cell, denoted by a. Then the robot continues
his exploration by one step toward east. If this cell is
a boundary cell, the robot continues his movement to
explore the right rectangle and after that explores the
left rectangles using Algorithm 1 (Figure 8(a)). Other-
wise, the robot goes back to a and explores the left and
right rectangles, respectively, using Algorithm 1 (Figure
8(b),(c)).

s

a

(a) Optimal exploration.

s

a

(b) A tight example.

Figure 8: Examples for algorithm’s output in the online
variant of exploring rectangular grid environment.

Algorithm 2 General Start Position
1: Walk to the south to reach a boundary cell–called a.
2: Walk to the east cell.
3: if is not a corner cell then
4: Go back to a.
5: Explore rectangle induced by s column and west cells by

Algorithm 1 until reach the cell adjacent to the north s.
6: Walk to east cell.
7: Explore the remaining cells by Algorithm 1 until reach s.
8: else
9: Walk to the north until reach boundary.
10: Walk to the west cell.
11: Walk to the south until reach the cell adjacent to the north

s.
12: Walk to the west cell.
13: Explore the remaining cells by Algorithm 1 until reach s.
14: end if

Theorem 10 The algorithm Genaral Start Position is
(1 + 4

C )− competitive.

Proof. Suppose R(m,n) is even in which m is even
and n is odd. Suppose s lies on the m′-th column of
the rectangle. In the worst case, if m′ is odd, we have
two odd rectangles R(m′, n) and R(m−m′, n) such that
. However, both subdivided rectangles are odd and we
can explore them with one additional step by using Al-
gorithm 1. Also, as it is shown in Figure 8(c), the robot
visits cell a and the eastern adjacent cell of a twice. So,
we have four extra cell, in general.

Sonline

Soptimal
=

C + 4

C
= 1 +

4

C

□

6 Conclusion

Different variants of online exploring in a rectangular
grid R(m,n) for a single robot have been studied in
this paper. Efficient bounds and algorithms have been
proposed depending on the odd or even size of R(m,n)
and also locus of starting position. In all of these cases,
we propose almost optimal online algorithms linear to
the length of the output path. As a future work, investi-
gating the problem for two or more robots is suggested.
In fact in this paper, we assumed a very limited visibil-
ity for the robot, while it seems efficient collaborating
robots under such assumption is challenging.
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